Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores.

نویسندگان

  • R H Chen
  • J C Waters
  • E D Salmon
  • A W Murray
چکیده

The spindle assembly checkpoint delays anaphase until all chromosomes are attached to a mitotic spindle. The mad (mitotic arrest-deficient) and bub (budding uninhibited by benzimidazole) mutants of budding yeast lack this checkpoint and fail to arrest the cell cycle when microtubules are depolymerized. A frog homolog of MAD2 (XMAD2) was isolated and found to play an essential role in the spindle assembly checkpoint in frog egg extracts. XMAD2 protein associated with unattached kinetochores in prometaphase and in nocodazole-treated cells and disappeared from kinetochores at metaphase in untreated cells, suggesting that XMAD2 plays a role in the activation of the checkpoint by unattached kinetochores. This study furthers understanding of the mechanism of cell cycle checkpoints in metazoa and provides a marker for studying the role of the spindle assembly checkpoint in the genetic instability of tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spindle Checkpoint Protein Xmad1 Recruits Xmad2 to Unattached Kinetochores

The spindle checkpoint prevents the metaphase to anaphase transition in cells containing defects in the mitotic spindle or in chromosome attachment to the spindle. When the checkpoint protein Xmad2 is depleted from Xenopus egg extracts, adding Xmad2 to its endogenous concentration fails to restore the checkpoint, suggesting that other checkpoint component(s) were depleted from the extract throu...

متن کامل

Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells

The spindle checkpoint prevents errors in chromosome segregation by inhibiting anaphase onset until all chromosomes have aligned at the spindle equator through attachment of their sister kinetochores to microtubules from opposite spindle poles. A key checkpoint component is the mitotic arrest-deficient protein 2 (Mad2), which localizes to unattached kinetochores and inhibits activation of the a...

متن کامل

Spatio-temporal Model for Silencing of the Mitotic Spindle Assembly Checkpoint

The spindle assembly checkpoint arrests mitotic progression until each kinetochore secures a stable attachment to the spindle. Despite fluctuating noise, this checkpoint remains robust and remarkably sensitive to even a single unattached kinetochore among many attached kinetochores; moreover, the checkpoint is silenced only after the final kinetochore-spindle attachment. Experimental observatio...

متن کامل

Mitosis-specific regulation of nuclear transport by the spindle assembly checkpoint protein Mad1p.

Nuclear pore complexes (NPCs) and kinetochores perform distinct tasks, yet their shared ability to bind several proteins suggests their functions are intertwined. Among these shared proteins is Mad1p, a component of the yeast spindle assembly checkpoint (SAC). Here we describe a role for Mad1p in regulating nuclear import that employs its ability to sense a disruption of kinetochore-microtubule...

متن کامل

The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly.

The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 274 5285  شماره 

صفحات  -

تاریخ انتشار 1996